Stan książek
Nasze książki są dokładnie sprawdzone i jasno określamy stan każdej z nich.
Nowa
Książka nowa.Używany - jak nowa
Niezauważalne lub prawie niezauważalne ślady używania. Książkę ciężko odróżnić od nowej pozycji.Używany - dobry
Normalne ślady używania wynikające z kartkowania podczas czytania, brak większych uszkodzeń lub zagięć.Używany - widoczne ślady użytkowania
zagięte rogi, przyniszczona okładka, książka posiada wszystkie strony.DODAJ DO LISTY ŻYCZEŃ
Masz tę lub inne książki?
Sprzedaj je u nas
Miniatury matematyczne 67
DODAJ DO LISTY ŻYCZEŃ
Masz tę lub inne książki?
Sprzedaj je u nas
Książeczkę, którą oddajemy do rąk Czytelnika, można by zatytułować O różnych obliczach geometrii. Miniatura pierwsza traktuje o zastosowaniu nierówności między średnimi do znajdowania obiektów geometrycznych pod pewnym względem optymalnych. Typową metodą atakowania tego typu zadań jest rachunek różniczkowy. Autorki pokazują liczne przykłady, gdy zadania takie można skutecznie i elegancko rozwiązać, wykorzystując nierówności znane już pitagorejczykom.
W miniaturze drugiej przedstawiono pewne zagadnienia związane ze wzajemnym położeniem prostych i punktów na płaszczyźnie. Pytania
są na tyle elementarne, że z powodzeniem mogłyby być rozważane przez Euklidesa. Aż dziw, że zostały zadane całkiem niedawno i wiele z nich
do tej pory nie znalazło satysfakcjonującej odpowiedzi.
Kolejna miniatura poświęcona jest niemal kompletnie zapomnianemu twierdzeniu Ptolemeusza. Klaudiusz Ptolemeusz, jeśli już jest wspominany w popularnych opracowaniach historii nauki, to jedynie jako twórca odrzuconego geocentrycznego modelu planetarnego. Próba rozwikłania ruchu ciał niebieskich odegrała niebagatelną rolę w rozwoju metod geometrycznych, a wkład samego Ptolemeusza jest nie do przecenienia. Omawiane twierdzenie to jedynie skromny produkt uboczny jego poszukiwań. Autorzy pokazują przykłady problemów, których typowe rozwiązanie wymaga wielokrotnego użycia twierdzenia Pitagorasa, natomiast zastosowanie twierdzenia Ptolemeusza daje rozwiązanie krótsze i mniej skomplikowane pod względem rachunkowym.
Miniatura ostatnia stara się uporządkować i podsumować szkolną wiedzę o izometriach płaszczyzny. Pojawiająca się tu grupa izometrii własnych figury płaskiej jest protoplastą nowoczesnego podejścia do problemu klasyfikacji nie tylko w geometrii, ale i w innych działach matematyki.
Wybierz stan zużycia:
WIĘCEJ O SKALI
Książeczkę, którą oddajemy do rąk Czytelnika, można by zatytułować O różnych obliczach geometrii. Miniatura pierwsza traktuje o zastosowaniu nierówności między średnimi do znajdowania obiektów geometrycznych pod pewnym względem optymalnych. Typową metodą atakowania tego typu zadań jest rachunek różniczkowy. Autorki pokazują liczne przykłady, gdy zadania takie można skutecznie i elegancko rozwiązać, wykorzystując nierówności znane już pitagorejczykom.
W miniaturze drugiej przedstawiono pewne zagadnienia związane ze wzajemnym położeniem prostych i punktów na płaszczyźnie. Pytania
są na tyle elementarne, że z powodzeniem mogłyby być rozważane przez Euklidesa. Aż dziw, że zostały zadane całkiem niedawno i wiele z nich
do tej pory nie znalazło satysfakcjonującej odpowiedzi.
Kolejna miniatura poświęcona jest niemal kompletnie zapomnianemu twierdzeniu Ptolemeusza. Klaudiusz Ptolemeusz, jeśli już jest wspominany w popularnych opracowaniach historii nauki, to jedynie jako twórca odrzuconego geocentrycznego modelu planetarnego. Próba rozwikłania ruchu ciał niebieskich odegrała niebagatelną rolę w rozwoju metod geometrycznych, a wkład samego Ptolemeusza jest nie do przecenienia. Omawiane twierdzenie to jedynie skromny produkt uboczny jego poszukiwań. Autorzy pokazują przykłady problemów, których typowe rozwiązanie wymaga wielokrotnego użycia twierdzenia Pitagorasa, natomiast zastosowanie twierdzenia Ptolemeusza daje rozwiązanie krótsze i mniej skomplikowane pod względem rachunkowym.
Miniatura ostatnia stara się uporządkować i podsumować szkolną wiedzę o izometriach płaszczyzny. Pojawiająca się tu grupa izometrii własnych figury płaskiej jest protoplastą nowoczesnego podejścia do problemu klasyfikacji nie tylko w geometrii, ale i w innych działach matematyki.