Stan książek
Nasze książki są dokładnie sprawdzone i jasno określamy stan każdej z nich.
Nowa
Książka nowa.Używany - jak nowa
Niezauważalne lub prawie niezauważalne ślady używania. Książkę ciężko odróżnić od nowej pozycji.Używany - dobry
Normalne ślady używania wynikające z kartkowania podczas czytania, brak większych uszkodzeń lub zagięć.Używany - widoczne ślady użytkowania
zagięte rogi, przyniszczona okładka, książka posiada wszystkie strony.DODAJ DO LISTY ŻYCZEŃ
Masz tę lub inne książki?
Sprzedaj je u nas
Miniatury matematyczne 62
DODAJ DO LISTY ŻYCZEŃ
Masz tę lub inne książki?
Sprzedaj je u nas
Oddajemy do rąk Czytelników kolejny tomik Miniatur Matematycznych, tradycyjnie przygotowany przez Komitet Organizacyjny Międzynarodowego Konkursu Kangur Matematyczny. Niniejsza książeczka dedykowana jest przede wszystkim młodzieży szkół gimnazjalnych, ale liczymy też na to, że i nauczyciele znajdą w niej ciekawy materiał do wykorzystania w pracy z uczniami szczególnie zainteresowanymi matematyką i pragnącymi treści nauczane w szkole zobaczyć w szerszym kontekście.
Niniejszy tomik składa się z trzech artykułów, które dotyczą matematyki w czystej formie, czyli arytmetyki i geometrii. Obie te nauki należą do najstarszych i stanowią podwalinę całej dzisiejszej matematyki. Wyrosły one w czasach starożytnych jako odpowiedź na potrzebę stworzenia uniwersalnego języka do opisu spraw związanych z życiem codziennym takich jak na przykład budownictwo świeckie i sakralne (geometria) czy opracowywanie wyników pomiaru kształtów geometrycznych lub handel (arytmetyka). Z biegiem czasu zostały wyabstrahowane z kontekstu zastosowań i stały się same w sobie celem rozważań.
Pierwsza miniatura dotyczy zagadnienia znanego ze szkoły, mianowicie konstrukcyjnego wyznaczania stycznych do okręgu przechodzących przez ustalony punkt znajdujący się na zewnątrz koła wyznaczonego przez ten okrąg. Temat jest omawiany na lekcjach matematyki. Okazuje się jednak, że konstrukcje szkolne to jedynie mała część całego zbioru różnorakich sposobów rozwiązania tego problemu. W artykule przedstawiono aż czternaście konstrukcji, większość wraz z uzasadnieniem ich poprawności. Obok klasycznych konstrukcji platońskich, to znaczy przeprowadzanych z użyciem cyrkla i linijki, znalazły się także takie, które można wykonać przy użyciu samego cyrkla lub samej linijki.
Kolejna miniatura, to arytmetyczna pauza pomiędzy lekcjami geometrii. Traktuje o kongruencjach liczbowych i ich własnościach oraz zastosowaniach do wyznaczania reszt z dzielenia liczb całkowitych przez ustalone liczby naturalne. W przystępny sposób wprowadza język kongruencji, zaczynając od kongruencji o module 10, która ze względu na swoją interpretację związaną z zapisem liczb w systemie dziesiątkowym, świetnie ilustruje ogólne własności. Dodatkowym walorem tego artykułu jest bardzo duża liczba konkretnych przykładów, które pokazują na czym polegają prawidłowości opisane językiem wyrażeń algebraicznych.
Ostatnia miniatura to, jak już wspomnieliśmy, kolejna lekcja geometrii, podobnie jak pierwszy artykuł poszerzająca wiedzę znaną ze szkoły. Dotyczy pojęcia potęgi punktu względem okręgu, które ukryte jest w szkole w twierdzeniu o stycznej i siecznej. W artykule zaprezentowano różne twierdzenia związane z tym pojęciem, a także z pojęciem prostej potęgowej dwóch niewspółśrodkowych okręgów. W miniaturze tej Czytelnik znajdzie również wiele ciekawych zadań wraz z rozwiązaniami oraz kilka zadań do samodzielnego rozwiązania, wśród których najtrudniejsze zostały opatrzone wskazówkami.
Wybierz stan zużycia:
WIĘCEJ O SKALI
Oddajemy do rąk Czytelników kolejny tomik Miniatur Matematycznych, tradycyjnie przygotowany przez Komitet Organizacyjny Międzynarodowego Konkursu Kangur Matematyczny. Niniejsza książeczka dedykowana jest przede wszystkim młodzieży szkół gimnazjalnych, ale liczymy też na to, że i nauczyciele znajdą w niej ciekawy materiał do wykorzystania w pracy z uczniami szczególnie zainteresowanymi matematyką i pragnącymi treści nauczane w szkole zobaczyć w szerszym kontekście.
Niniejszy tomik składa się z trzech artykułów, które dotyczą matematyki w czystej formie, czyli arytmetyki i geometrii. Obie te nauki należą do najstarszych i stanowią podwalinę całej dzisiejszej matematyki. Wyrosły one w czasach starożytnych jako odpowiedź na potrzebę stworzenia uniwersalnego języka do opisu spraw związanych z życiem codziennym takich jak na przykład budownictwo świeckie i sakralne (geometria) czy opracowywanie wyników pomiaru kształtów geometrycznych lub handel (arytmetyka). Z biegiem czasu zostały wyabstrahowane z kontekstu zastosowań i stały się same w sobie celem rozważań.
Pierwsza miniatura dotyczy zagadnienia znanego ze szkoły, mianowicie konstrukcyjnego wyznaczania stycznych do okręgu przechodzących przez ustalony punkt znajdujący się na zewnątrz koła wyznaczonego przez ten okrąg. Temat jest omawiany na lekcjach matematyki. Okazuje się jednak, że konstrukcje szkolne to jedynie mała część całego zbioru różnorakich sposobów rozwiązania tego problemu. W artykule przedstawiono aż czternaście konstrukcji, większość wraz z uzasadnieniem ich poprawności. Obok klasycznych konstrukcji platońskich, to znaczy przeprowadzanych z użyciem cyrkla i linijki, znalazły się także takie, które można wykonać przy użyciu samego cyrkla lub samej linijki.
Kolejna miniatura, to arytmetyczna pauza pomiędzy lekcjami geometrii. Traktuje o kongruencjach liczbowych i ich własnościach oraz zastosowaniach do wyznaczania reszt z dzielenia liczb całkowitych przez ustalone liczby naturalne. W przystępny sposób wprowadza język kongruencji, zaczynając od kongruencji o module 10, która ze względu na swoją interpretację związaną z zapisem liczb w systemie dziesiątkowym, świetnie ilustruje ogólne własności. Dodatkowym walorem tego artykułu jest bardzo duża liczba konkretnych przykładów, które pokazują na czym polegają prawidłowości opisane językiem wyrażeń algebraicznych.
Ostatnia miniatura to, jak już wspomnieliśmy, kolejna lekcja geometrii, podobnie jak pierwszy artykuł poszerzająca wiedzę znaną ze szkoły. Dotyczy pojęcia potęgi punktu względem okręgu, które ukryte jest w szkole w twierdzeniu o stycznej i siecznej. W artykule zaprezentowano różne twierdzenia związane z tym pojęciem, a także z pojęciem prostej potęgowej dwóch niewspółśrodkowych okręgów. W miniaturze tej Czytelnik znajdzie również wiele ciekawych zadań wraz z rozwiązaniami oraz kilka zadań do samodzielnego rozwiązania, wśród których najtrudniejsze zostały opatrzone wskazówkami.