Stan książek
Nasze książki są dokładnie sprawdzone i jasno określamy stan każdej z nich.
Nowa
Książka nowa.Używany - jak nowa
Niezauważalne lub prawie niezauważalne ślady używania. Książkę ciężko odróżnić od nowej pozycji.Używany - dobry
Normalne ślady używania wynikające z kartkowania podczas czytania, brak większych uszkodzeń lub zagięć.Używany - widoczne ślady użytkowania
zagięte rogi, przyniszczona okładka, książka posiada wszystkie strony.DODAJ DO LISTY ŻYCZEŃ
Masz tę lub inne książki?
Sprzedaj je u nas
Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow
DODAJ DO LISTY ŻYCZEŃ
Masz tę lub inne książki?
Sprzedaj je u nas
W ciągu ostatnich lat uczenie maszynowe stało się sercem wielu nowoczesnych produktów, takich jak zaawansowane techniki wyszukiwania w przeglądarkach, rozpoznawanie mowy w smartfonach czy proponowanie treści w zależności od indywidualnych preferencji użytkownika. Być może niedługo taki system inteligentny zastąpi Cię za kierownicą samochodu. Uczenie głębokie wprowadziło nową jakość do uczenia maszynowego. Daje niesamowite możliwości, jednak wymaga olbrzymiej mocy obliczeniowej i potężnych ilości danych. Programiści implementujący takie rozwiązania są poszukiwanymi specjalistami i mogą liczyć na ekscytujące oferty!
Ta książka jest praktycznym podręcznikiem tworzenia systemów inteligentnych. Przedstawiono tu najważniejsze zagadnienia teoretyczne dotyczące uczenia maszynowego i sieci neuronowych. W zrozumiały sposób zaprezentowano koncepcje i narzędzia służące do tworzenia systemów inteligentnych. Opisano Scikit-Learn i TensorFlow - środowiska produkcyjne języka Python - i pokazano krok po kroku, w jaki sposób wykorzystuje się je do implementacji sieci neuronowych. Liczne praktyczne przykłady i ćwiczenia pozwolą na pogłębienie i utrwalenie zdobytej wiedzy. Jeśli tylko potrafisz posługiwać się Pythonem, dzięki tej przystępnie napisanej książce szybko zaczniesz implementować systemy inteligentne.
W tej książce między innymi:
podstawowe koncepcje uczenia maszynowego, uczenia głębokiego i sieci neuronowych
przygotowywanie zbiorów danych i zarządzanie nimi
algorytmy uczenia maszynowego
rodzaje architektury sieci neuronowych
uczenie głębokich sieci neuronowych
olbrzymie zbiory danych i uczenie poprzez wzmacnianie
Wybierz stan zużycia:
WIĘCEJ O SKALI
W ciągu ostatnich lat uczenie maszynowe stało się sercem wielu nowoczesnych produktów, takich jak zaawansowane techniki wyszukiwania w przeglądarkach, rozpoznawanie mowy w smartfonach czy proponowanie treści w zależności od indywidualnych preferencji użytkownika. Być może niedługo taki system inteligentny zastąpi Cię za kierownicą samochodu. Uczenie głębokie wprowadziło nową jakość do uczenia maszynowego. Daje niesamowite możliwości, jednak wymaga olbrzymiej mocy obliczeniowej i potężnych ilości danych. Programiści implementujący takie rozwiązania są poszukiwanymi specjalistami i mogą liczyć na ekscytujące oferty!
Ta książka jest praktycznym podręcznikiem tworzenia systemów inteligentnych. Przedstawiono tu najważniejsze zagadnienia teoretyczne dotyczące uczenia maszynowego i sieci neuronowych. W zrozumiały sposób zaprezentowano koncepcje i narzędzia służące do tworzenia systemów inteligentnych. Opisano Scikit-Learn i TensorFlow - środowiska produkcyjne języka Python - i pokazano krok po kroku, w jaki sposób wykorzystuje się je do implementacji sieci neuronowych. Liczne praktyczne przykłady i ćwiczenia pozwolą na pogłębienie i utrwalenie zdobytej wiedzy. Jeśli tylko potrafisz posługiwać się Pythonem, dzięki tej przystępnie napisanej książce szybko zaczniesz implementować systemy inteligentne.
W tej książce między innymi:
podstawowe koncepcje uczenia maszynowego, uczenia głębokiego i sieci neuronowych
przygotowywanie zbiorów danych i zarządzanie nimi
algorytmy uczenia maszynowego
rodzaje architektury sieci neuronowych
uczenie głębokich sieci neuronowych
olbrzymie zbiory danych i uczenie poprzez wzmacnianie